Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.10.475377

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in late 2019, has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available, and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show high clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new virus variants, and generally short duration of immunity, the development of safe and effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing and approved drugs for accelerated clinical testing and potential emergency use authorizations. However, drug-repurposing using high throughput screenings in cellular assays, often identify hits that later prove ineffective in clinical studies. Our approach was to evaluate the activity of compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Secondly, we evaluated drug combinations using sub-maximal doses of each active single compound. Here, we report the antiviral effects of 95 single compounds and 30 combinations. The data show that selected drug combinations including 10 M of molnupiravir, a viral RNA-dependent RNA polymerase (RdRp) inhibitor, effectively inhibit SARS-CoV-2 replication. This indicates that such combinations are worthy of further evaluation as potential treatment strategies against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.2.24724.v3

ABSTRACT

Background: Coronaviruses (CoVs) were long thought to only cause mild respiratory and gastrointestinal symptoms in humans but outbreaks of Middle Eastern Respiratory Syndrome (MERS)-CoV, Severe Acute Respiratory Syndrome (SARS)-CoV, and the recently identified SARS-CoV-2 have cemented their zoonotic potential and their capacity to cause serious morbidity and mortality, with case fatality rates ranging from 4 to 35%. Currently, no specific prophylaxis or treatment is available for CoV infections.Therefore we investigated the virucidal and antiviral potential of Echinacea purpurea (Echinaforce®) against human coronavirus (HCoV) 229E, highly pathogenic MERS- and SARS-CoVs, as well as the newly identified SARS-CoV-2, in vitro.Methods: To evaluate the antiviral potential of the extract we pre-treated virus particles and cells and evaluated remaining infectivity by limited dilution. Furthermore, we exposed cells to the extract after infection to further evaluate its potential as a prophylaxis and treatment against coronaviruses. We also determined the protective effect of Echinaforce® in re-constituted nasal epithelium.Results: In the current study, we found that HCoV-229E was irreversibly inactivated when exposed to Echinaforce® at 3.2mg/ml IC50. Pre-treatment of cell lines, however, did not inhibit infection with HCoV-229E and post-infection treatment had only a marginal effect on virus propagation at 50 mg/ml. However, we did observe a protective effect in an organotypic respiratory cell culture system by exposing pre-treated respiratory epithelium to droplets of HCoV-229E, imitating a natural infection. The observed virucidal activity of Echinaforce® was not restricted to common cold coronaviruses, as both SARS-CoV-1 and MERS-CoVs were inactivated at comparable concentrations. Finally, the causative agent of COVID-19, SARS-CoV-2 was also inactivated upon treatment with 50ug/ml Echinaforce®.Conclusions: These results show that Echinaforce® is virucidal against HCoV-229E, upon direct contact and in an organotypic cell culture model. Furthermore, MERS-CoV and both SARS-CoV-1 and SARS-CoV-2 were inactivated at similar concentrations of the extract. Therefore we hypothesize that Echinacea purpurea preparations, such as Echinaforce®, could be effective as prophylactic treatment for all CoVs due to their structural similarities. 


Subject(s)
Signs and Symptoms, Respiratory , Coronavirus Infections , Infections , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL